Differential Effect of Plasma Estradiol Levels Achieved with Hormone Therapy on the Progression of Subclinical Atherosclerosis in Early and Late Postmenopausal Women

Intira Sriprasert1, Howard N. Hodis1,2, Roksana Karim1,2, Frank Z. Stanczyk1,3, Donna Shoupe3, Victor W. Henderson4, Wendy J. Mack1,2

1Department of Preventive Medicine, Keck School of Medicine, University of Southern California
2Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California
3Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California
4Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences, Stanford University

Contact information: sriprase@usc.edu

Disclosure

- The authors have no financial relationships to disclose.

Hormone Timing Hypothesis

- Women who initiate hormone therapy (HT) at younger age or sooner after menopause have reduced risk of coronary heart disease (CHD) and all-cause mortality compared with placebo.

- Early versus Late Intervention Trial with Estradiol (ELITE) was specifically designed to test effect of HT on subclinical atherosclerosis progression relative to HT initiation according to time-since-menopause
 - Single-center, double-blinded randomized controlled trial of HT administered to early and late postmenopausal women.

ELITE Result

- **Early postmenopause (≤ 6 yrs)**
 - HT significantly reduced the progression of subclinical atherosclerosis

- **Late postmenopause (≥ 10 yrs)**
 - HT had no effect on the progression of subclinical atherosclerosis

Objective

- To evaluate whether there is a differential association between plasma estradiol levels and progression of subclinical atherosclerosis based on when HT was initiated in relation to time-since-menopause using ELITE data.

ELITE Study

- **ELITE study methods**
 - July 2005 to February 2013
 - Median follow-up duration 4.8 years
 - Stratified block randomization (1:1 ratio)
 - HT vs. placebo
 - early vs. late postmenopause
 - Oral micronized 17-beta-estradiol 1 mg/day with/without 4% vaginal micronized progesterone gel 45 mg/day for 10 days/month

Study Population

- **Inclusion criteria**
 - Healthy postmenopausal women without coronary heart disease

- **Exclusion criteria**
 - Diabetes, hypertriglyceridemia, uncontrolled hypertension
 - Contraindication for HT
 - Current use of HT

- **In this analysis**
 - Participants in ELITE with baseline and at least one follow up measurement of plasma estradiol level and carotid artery intima-media thickness (CIMT)

Measurements

- **Plasma estradiol**
 - Radioimmunoassay with preceding organic solvent extraction and Celite column partition chromatography
 - Assay sensitivity = 2 pg/ml

- **Carotid artery intima-media thickness (CIMT)**
 - At right distal common carotid artery
 - B-mode ultrasonograms
 - Coefficient of variation = 0.69%

- **Baseline and every 6 months**

Statistical Analysis

- **Baseline characteristics**
 - Two-sample t test or chi-square test

- **Per-participant CIMT progression rate**
 - Mixed-effects linear model
 - A product term between time-since-menopause, estradiol level, and duration from baseline tested if association of estradiol level with CIMT rate differed in early vs. late postmenopause

- **Estimates of CIMT progression rate from plasma estradiol levels**

Results

- **Baseline characteristics**

- **Per-participant CIMT progression rate**

- **Estimates of CIMT progression rate from plasma estradiol levels**

Table 1 Baseline characteristics of women by time-since-menopause strata

<table>
<thead>
<tr>
<th>Variables</th>
<th>Early Postmenopause</th>
<th>Late Postmenopause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age* (years)</td>
<td>54.7 ± 4.2</td>
<td>63.6 ± 6.1</td>
</tr>
<tr>
<td>Plasma estradiol level (pg/ml)</td>
<td>7.9 ± 4.8</td>
<td>8.5 ± 5.7</td>
</tr>
<tr>
<td>Carotid artery intima-media thickness* (µm)</td>
<td>747.1 ± 95.5</td>
<td>786.9 ± 103.2</td>
</tr>
<tr>
<td>Race*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>161 (64.9%)</td>
<td>254 (72.9%)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>21 (8.5%)</td>
<td>31 (8.9%)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>36 (14.5%)</td>
<td>43 (12.4%)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>30 (12.1%)</td>
<td>20 (5.8%)</td>
</tr>
<tr>
<td>Education*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school graduate or less</td>
<td>6 (2.4%)</td>
<td>16 (4.6%)</td>
</tr>
<tr>
<td>Trade/business school/some college</td>
<td>60 (24.2%)</td>
<td>113 (32.5%)</td>
</tr>
<tr>
<td>Bachelor’s degree/Graduate/professional</td>
<td>182 (73.4%)</td>
<td>219 (62.9%)</td>
</tr>
</tbody>
</table>

*p value <0.05
Continuous variables: mean±standard deviation, t-test
Categorical variables: frequency (percent), χ² test / Fisher’s exact test

Table 2 Mean plasma estradiol level during the trial and change of plasma estradiol level from baseline among total sample and participants in HT group by time-since-menopause strata

<table>
<thead>
<tr>
<th>Variables</th>
<th>Early Postmenopause</th>
<th>Late Postmenopause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ELITE cohort</td>
<td>N=596</td>
<td></td>
</tr>
<tr>
<td>Mean plasma estradiol level during the trial (pg/ml)</td>
<td>29.7 ± 31.8</td>
<td>25.5 ± 22.5</td>
</tr>
<tr>
<td>Change of plasma estradiol level from baseline* (pg/ml)</td>
<td>21.7 ± 31.6</td>
<td>17.0 ± 22.7</td>
</tr>
<tr>
<td>Participants in HT group</td>
<td>N=297</td>
<td></td>
</tr>
<tr>
<td>Mean plasma estradiol level during the trial (pg/ml)</td>
<td>48.2 ± 35.8</td>
<td>40.2 ± 23.6</td>
</tr>
<tr>
<td>Change of plasma estradiol level from baseline* (pg/ml)</td>
<td>40.4 ± 35.4</td>
<td>31.6 ± 24.0</td>
</tr>
</tbody>
</table>

*p value <0.05
Continuous variables: mean±standard deviation, t-test
Results

- Per-participant CIMT progression rate

 - Early postmenopause
 - Inverse association of plasma estradiol and CIMT rate
 - Beta coefficient = -0.04 (95% CI: -0.09, -0.001)
 - (p=0.04)

 - Late postmenopause
 - Positive association of plasma estradiol and CIMT rate
 - Beta coefficient = 0.063 (95% CI: 0.018, 0.107)
 - (p=0.006)

Results

- Per-participant CIMT progression rate

 - The effect of plasma estradiol levels on the CIMT rate was significantly different between time-since-menopause strata.
 - 3 way interaction term: time-since-menopause*mean plasma estradiol level*duration from baseline
 - Total ELITE cohort (p<0.001)
 - Participants in HT group (p=0.004)

Discussion

- These results not only support the HT timing hypothesis tested by ELITE, but also add an explanatory mechanism consistent with the timing hypothesis.

 - The timing of HT initiation could be
 - An indicator of underlying vascular health and responsivity to HT
 - A determinant whether estradiol will reduce or have no effect on the progression of atherosclerosis
Conclusion

- Plasma estradiol levels achieved through oral estradiol therapy had opposite effects on the progression of subclinical atherosclerosis among women when initiated in early (≤ 6 yrs) and late postmenopause (≥ 10 yrs).

- With higher plasma estradiol levels, the CIMT progression rate is decreased when HT is initiated early after menopause (≤ 6 yrs) and has no effect when initiated later after menopause (≥ 10 yrs) as analyzed using the all women in ELITE cohort as well as women receiving HT.