Application of Nutrigenomics Toward Personalized Dietary Recommendations

Johanna Lampe, PhD, RD
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center, Seattle, WA
How can genetic variation influence response to diet?

How can “omic” approaches be incorporated into the study of gene-diet interactions?

How do we move forward to personalized dietary recommendations, now and in the future?
Nutrigenomics:
Study of the interactions between genes and diet.
Study of how genetic variation influences response to diet.

- GENOME
- EPIGENOME
- MICROBIOME
 Gut bacterial genome

Health & Disease Risk
Nutrigenomic Approaches: Analysis of Gene-Diet Interactions

- **Transcription**
 - DNA → mRNA
- **Translation**
 - mRNA → Protein

Protein Function
- e.g., enzyme activity

Susceptibility
- (e.g., genetic variation)

Down-stream Effects

Epi/genomics

Transcriptomics

Proteomics

Metabolomics

Participants

5 10 15 20 25 30 35

- a.
- b.
- c.
The human diet is complex.

- 1000s of compounds
- Variety of methods of food preparation
 - Structure and particle size
 - Bioavailability to host
How can genetic variation influence response to diet?

- Food preference
- Food tolerance
- Absorption
- Transport
- Metabolism
- Effect in target tissue

Lampe and Potter, in Gene-Environment Interactions (Costa and Eaton, eds), 2006
Metabolism: NAT2 Polymorphism Modifies Dietary-Induced DNA Damage in Colorectal Mucosa

- 2-day vegetarian diet vs 2-day grilled meat diet
- Measured DNA strand breaks in epithelial cells extracted from stool samples

Increased Urinary Mutagenicity with Fried Red Meat Intake in Individuals with UGT1A1*28

2-week controlled feeding study in 60 subjects
Fed red meat cooked at 250°C
Mutagenicity of urine tested using Salmonella YG1024 (+S9)

<table>
<thead>
<tr>
<th>UGT1A1 genotype</th>
<th>Point estimate</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6</td>
<td>747</td>
<td>-1166-2660</td>
<td>0.450</td>
</tr>
<tr>
<td>6/7 or 7/7</td>
<td>4062</td>
<td>1623-6511</td>
<td>0.003</td>
</tr>
</tbody>
</table>

P for interaction between UGT1A1 and meat intake = 0.04

Metabolism of Chemopreventive Phytochemicals: Isothiocyanates Conjugated by Glutathione S-Transferases and Excreted in Urine

GST

\[\text{ITC} + \text{GSH} \rightarrow \text{ITC-glutathione} \]

\[\gamma\text{-GT} \]

\[\text{ITC-glutathione} \rightarrow \text{ITC-cysteine-glutathione} \]

\[\text{CG} \]

\[\text{ITC-cysteine-glutathione} \rightarrow \text{ITC-cysteine-cysteine} \]

\[\text{AT} \]

\[\text{ITC-cysteine-cysteine} \rightarrow \text{ITC-N-acetylcysteine} \]

Dithiocarbamates, excreted in urine
GSTM1-null subjects had:

- Greater rate of urinary excretion of sulforaphane in first 6 h
- Higher % sulforaphane excretion over 24 h

Integrating Genomics and Metabolomics: A Cross-Sectional Study

- 284 men
- GWA study data with serum metabolomics-based quantitation of 363 metabolites.
- Reported associations of frequent SNP with differences in the metabolic homoeostasis, explaining up to 12% of observed variance.

Genotypes and Metabotypes: Endogenous Metabolite-SNP Interactions

- Associations of frequent SNP with differences in the metabolic homoeostasis explained up to 12% of observed variance.
- Using ratios of certain metabolite concentrations as proxy for enzymatic activity, explained up to 28% of the variance (P-values 10^{-16}–10^{-21}).
- Identified 4 variants in genes coding for lipid metabolism enzymes (FADS1, LIPC, SCAD and MCAD), where corresponding metabolic phenotype matched pathways in which these enzymes are active.

Genetically Determined Metabotypes: A GWA study of metabolic traits in human urine

- Designed to investigate the detoxification capacity of human body.
- Tested for associations between 59 metabolites in urine from 862 male participants in the SHIP study and replicated the results in independent samples.
- Reported 5 loci with joint P values of association from 3.2×10^{-19} to 2.1×10^{-182}. Variants at 3 loci previously linked with important clinical outcomes: $SLC7A9$ is a risk locus for chronic kidney disease, $NAT2$ for coronary artery disease and genotype...

Gut microbial variation:
Metabolism of soy isoflavone daidzein

Daidzein → Dihydrodaidzein → Cis/Trans-isoflavon-4-ol → O-Desmethylandolensin → Equol

Urinary Equol Excretion

30-50% of individuals produce

1 nmol/d - 100 nmol/d - 1000 nmol/d - 10000 nmol/d
INTERVENTION: Lymphocyte Gene Expression Differentially Induced in Equol-Producing and Nonproducing Women

- 30 postmenopausal women
- ~900 mg isoflavones for 84 d
- Gene expression array of peripheral lymphocytes
- 27 genes changed with isoflavones
- Stronger effect on estrogen-responsive genes in equol producers than nonproducers.

Gut Microbiome Phenotypes: Enterotypes

Focusing efforts in areas where evidence is suggestive, but inconclusive, most likely to result in findings that can advance scientific knowledge or change public health practice

- Understand the mechanisms
- Reconcile the heterogeneity

Application of genomic and systems approaches to understand:

- Biologic pathways and mechanisms
- Complexity of effects of dietary patterns
- Behavior
Ultimate Goal of Metabotyping

• Develop a novel approach to personalized health care based on a combination of genotyping and metabolic characterization.
• Identify genetically determined metabotypes that can subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.
• Characterize microbial modification of effects of diet.

What do we need to get there?

- Sufficiently sensitive technologies to detect small, but physiologically relevant, differences or changes in response to diet.
- Data analysis, visualization, and annotation methods.
- Ability to integrate the various omics platforms in a systematic fashion.
- Characterization of phenotypes.
Is there potential for personalized, or more precise, individual dietary recommendations?

- Yes, but still have to:
 - Establish the relevant parameters
 - Integrate the omics data
- Don’t lose sight of the broader public health messages that can have the greatest impact on the largest number of people